INTERNATIONAL BACCALAUREATE # Mathematics: applications and interpretation MAI # EXERCISES [MAI 1.14] MATRIX EQUATIONS – THE LINEAR SYSTEM AX=B Compiled by Christos Nikolaidis ## A. Paper 1 questions (SHORT) #### **MATRIX EQUATIONS** | 1. | [Maximum mark: 6] | | |----|-------------------|---| | | (1 2) | 1 | (ii) Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$, $B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$. Find a matrix X such that 2A+3X=B by using two methods: - (i) **Method A**: Assume that $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and find a,b,c,d. - Method B: Solve the equation for X and then calculate X. | 2. | [Maximum | mark. | QΊ | |----|----------------|-------|----| | ۷. | IIVIAXIIIIUIII | mark. | Οl | (c) Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$, $B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$. - (a) Find A^{-1} . [1] - (b) Find a matrix X such that AX = B by using two methods: - (i) **Method A**: Assume that $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and find a,b,c,d . - (ii) **Method B**: Solve the equation for X and then calculate X. [5] [2] | (ii) Method B. Conve the equation for A and their calculate A. | | | | |--|--|--|--| | Find a matrix X such that $XA = B$ [use method B only]. | 3. | [Maximum | 55 5 5 1 5 T T T | |----|----------------|------------------| | -3 | IIVIAXIIIIIIII | mark / i | | | | | All matrices in this question are 2×2 matrices. Provided that matrix A has an inverse, solve the following matrix equations | Equation | Solve for X | |--------------|-------------| | X - A = B | | | A + 2X = B | | | AX = C | | | XA = C | | | AXA = C | | | AX - B = C | | | 2AX + 3B = C | | ### **4.** [Maximum mark: 6] The matrices A, B, C and X are all invertible 3×3 matrices. - (a) Given that $A^{-1}XB = C$, express X in terms of the other matrices. - (b) Provided that A I has an inverse, solve the matrix equations (i) $$AX - X = C$$ (ii) $XA - X = C$. [2] [4] | _ | ximum mark: 4] | |-------|--| | Let 2 | $4 = \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}.$ | | | Find A^2 . | | (b) | Let $\mathbf{B} = \begin{pmatrix} -3 & 4 \\ 2 & 1 \end{pmatrix}$. Solve the matrix equation $3\mathbf{X} + \mathbf{A} = \mathbf{B}$. | [Max | ximum mark: 51 | | | kimum mark: 5] en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | | | | | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$. | | | d B are 2 × 2 matrices, where $A = \begin{bmatrix} 5 & 2 \\ 2 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 11 & 2 \\ 44 & 8 \end{bmatrix}$. Find B . | |--------------|--| kimum mark: 4] $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}.$ | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find AB . | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find AB . | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find \mathbf{AB} .
Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find $A\mathbf{B}$.
Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. | | _et ∠
(a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find $A\mathbf{B}$.
Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. | | _et ∠
a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
Find $A\mathbf{B}$.
Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. | | _et ∠
a) | $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}.$ Find $\mathbf{A}\mathbf{B}$. Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. | | 9. | [Maximum | mark: | 6] | |----|----------|-------|----| |----|----------|-------|----| Let $$\mathbf{A} = \begin{pmatrix} 5 & 1 \\ 6 & 2 \end{pmatrix}$$ and $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ -6 & 5 \end{pmatrix}$. (a) (i) Find AB. (ii) Write down the inverse of A. [3] Let $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $C = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$. (b) Solve the matrix equation AX = C. [3] ## 10. [Maximum mark: 6] Consider the matrix $\mathbf{A} = \begin{pmatrix} 5 & -2 \\ 7 & 1 \end{pmatrix}$. - (a) Write down the inverse, A^{-1} . [2] - (b) B, C and X are also 2×2 matrices. - (i) Given that XA + B = C, express X in terms of A^{-1} , B and C. - (ii) Given that $\mathbf{B} = \begin{pmatrix} 6 & 7 \\ 5 & -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} -5 & 0 \\ -8 & 7 \end{pmatrix}$, find \mathbf{X} . [4] | _ | ximum mark: 4] $4 = \begin{pmatrix} 2 & -4 \end{pmatrix}$ | |--------------------------------------|---| | | $\mathbf{A} = \begin{pmatrix} 2 & -4 \\ -1 & 3 \end{pmatrix}.$ | | (i) | Find A^{-1} . (ii) Solve the matrix equation $AX = \begin{pmatrix} 4 & 6 \\ 2 & -2 \end{pmatrix}$. | . [Maː | kimum mark: 7] | | • | aman mark. 7 | | • | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. | | Mati | | | Mate
Let . | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. If C be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. Equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 | | Mate
Let .
This
mate | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. | | Matr
Let .
This
matr
(a) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. If C be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. Equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . | | Matrice Let This matrice (a) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2×2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X . | | Mate Let . This mate (a) (b) | rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X . | | 13. | [Maximum mark: 6] | | |-----|---|-----| | | The matrices A , B , X are given by | | | | $A = \begin{pmatrix} 3 & 1 \\ -5 & 6 \end{pmatrix}, B = \begin{pmatrix} 4 & 8 \\ 0 & -3 \end{pmatrix}, X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ where } a, b, c, d \in \mathbb{Q}.$ | | | | Given that $AX + X = B$, find the exact values of a , b , c and d . | 14. | [Maximum mark: 5] | | | 17. | | | | | Let $A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & -3 & 0 \\ 4 & -2 & 1 \end{pmatrix}$. | | | | | [1] | | | | | | | (b) Let B be a 3 × 3 matrix. Given that $AB + \begin{pmatrix} -3 & 2 & 1 \\ 5 & 3 & 4 \\ -9 & 2 & 10 \end{pmatrix} = \begin{pmatrix} 7 & 6 & -7 \\ 6 & 5 & -8 \\ 1 & 7 & -5 \end{pmatrix}$, find B . | [4] | | | | | | | | | | | | THE LINEAR SYSTEM $AX = B$ | | |-----|-------|--|-----| | 15. | [Max | imum mark: 6] | | | | Let 2 | $4 = \begin{pmatrix} 7 & 8 \\ 2 & 3 \end{pmatrix}$ | | | | (a) | by using the appropriate formulas, find | | | | | (i) $\det A$ | | | | | (ii) A^{-1} . | [3] | | | (b) | Hence, solve the system of simultaneous equations. | | | | | 7x + 8y = 1 | | | | | 2x + 3y = 1 | [3] | 16. | 6. [Maximum mark: 8] Let $\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$. | | | |-----|---|--|-----| | | | | | | | (a) | Write down the determinant of M . | [1] | | | (b) | Write down M^{-1} | [1] | | | (b) | Hence solve $M \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$. | [3] | | | (c) | Write down | | | | | (i) a system of equations represented by the matrix equation in (c). | | | | | (ii) the solution of the system | [3] | 17. | | [Maximum mark: 6] | | | | | |-----|------|---|-----|--|--|--| | | A m | atrix M has inverse $M^{-1} = \begin{pmatrix} 5 & 0 \\ 1 & 2 \end{pmatrix}$. Let $B = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$. | | | | | | | (a) | Find M | [3] | | | | | | (b) | Solve the matrix equation $MX = B$ | [3] | 18. | [Max | ximum mark: 5] | | | | | | | Let | $\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ -1 & -1 & 4 \\ 2 & 4 & -3 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}.$ | | | | | | | (a) | Write down A^{-1} . | [2] | | | | | | (b) | Solve $AX = B$. | [3] | 19. | [Maximum | mark. | 61 | |-----|----------------|--------|----------| | | IIVIANIIIIAIII | midin. | \sim 1 | (a) Write down the inverse of the matrix $$\mathbf{A} = \begin{pmatrix} 1 & -3 & 1 \\ 2 & 2 & -1 \\ 1 & -5 & 3 \end{pmatrix}$$. [2] (b) Hence solve the simultaneous equations $$x-3y+z=1$$ $$2x+2y-z=2$$ $$x-5y+3z=3$$ [4] **20.** [Maximum mark: 6] (a) Write down the inverse of the matrix $$A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix}$$ [2] (b) Hence solve Therefore solve $$x-3y=1$$ $$2x+z=2$$ $$4x+y+3z=-1$$ [4] | 21. | [Maximum | mark. | ឧា | |-------------|----------------|-----------|----| | 4 1. | IIVIAXIIIIUIII | IIIain. ' | υı | Let $$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$, $B = \begin{pmatrix} 18 \\ 23 \\ 13 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. - (a) Write down the inverse matrix A^{-1} . - (b) Consider the equation AX = B. | (i) | Express X in terms of A^{-1} and B . (ii) Hence , solve for X | | | | | |-----|--|--|--|--|--| ### 22. [Maximum mark: 6] The system of linear equations below can be written as the matrix equation MX = N. $$x+6y-3z = -1$$ $$4x+2y-4z = 12$$ $$x+y+5z = 15$$ - (a) Write down the matrices M and N. - (b) Solve the **matrix** equation MX = N. [3] [2] (c) Hence write down the solution of the system of linear equations. [1] |
 | ••••• |
 | |------|-------|------| |
 | |
 |
 | | 22 | Maximum | mark | <u>۵</u> 1 | |-------------|----------|---------|------------| | 23 . | [Maximum | IIIaik. | ΟI | The matrix $$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ -3 & 1 & -1 \\ 2 & -2 & 1 \end{pmatrix}$$ has inverse $\mathbf{A}^{-1} = \begin{pmatrix} -1 & -2 & -2 \\ 3 & 1 & 1 \\ a & 6 & b \end{pmatrix}$. (a) Use the fact $AA^{-1} = I$ to find the value of (i) a; (ii) b. [2] Consider the simultaneous equations $$x+2y=7$$ $$-3x+y-z=10$$ $$2x-2y+z=-12$$ | (a) | write these equations as a matrix equation. | [1] | |-----|---|-----| | (c) | Solve the matrix equation. | [3] | ### Paper 2 questions (LONG) Let $$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$. (a) Find (i) $$A^{-1}$$; (ii) A^{2} . [4] Let $$\mathbf{B} = \begin{pmatrix} p & 2 \\ 0 & q \end{pmatrix}$$. (b) Given that $$2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 6 \\ 4 & 3 \end{pmatrix}$$, find the value of p and of q . [3] (c) Hence find $\mathbf{A}^{-1}\mathbf{B}$. [2] | (d) | Let X be a 2 × 2 matrix such that $AX = B$. Find X . | [2] | |-----|---|-----| | | | | | | | [MATERIAL PROPERTY OF THE ENGLAND | | | | |-----|-------|--|-----|--|--| | 25. | [Max | Maximum mark: 12] | | | | | | Let . | $m{M} = egin{pmatrix} a & 2 \\ 2 & -1 \end{pmatrix}$, where $a \in \mathbb{Z}$. | | | | | | (a) | Find M^2 in terms of a | [4] | | | | | (b) | If M^2 is equal to $\begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$, find the value of a . | [2] | | | | | (c) | Using this value of a , find M^{-1} and hence solve the system of equations: | | | | | | | -x + 2y = -3 | | | | | | | 2x - y = 3 | [6] | **26.** [Maximum mark: 13] Let $$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$. (a) Write down A^{-1} . [2] The matrix \mathbf{B} satisfies the equation $\left(\mathbf{I} - \frac{1}{2}\mathbf{B}\right)^{-1} = \mathbf{A}$, where \mathbf{I} is the 3×3 identity matrix. - (b) (i) Show that $\mathbf{B} = -2(\mathbf{A}^{-1} \mathbf{I})$ and hence find \mathbf{B} . - (ii) Write down $\det \mathbf{B}$ and hence, explain why \mathbf{B}^{-1} exists. [6] [5] Let $\mathbf{BX} = \mathbf{C}$, where $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. (c) (i) Find X. | (ii) | Write down a system of equations whose solution is represented by $oldsymbol{X}$. | |------|--| **27**. | [Max | kimum mark: 15] | | | | | |------|---|-----|--|--|--| | Let | $f(x) = ax^2 + bx + c$ where a , b and c are rational numbers. | | | | | | (a) | The point P(-4, 3) lies on the curve of f Show that $16a-4b+c=3$. | | | | | | (b) | (b) The points Q(6, 3) and R(-2 , -1) also lie on the curve of f . Write down two other | | | | | | | linear equations in a , b and c . | [2] | | | | | (c) | These three equations may be written as a matrix equation in the form $AX = B$, | | | | | | | where $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. | | | | | | | (i) Write down the matrices \boldsymbol{A} and \boldsymbol{B} . | | | | | | | (ii) Write down A^{-1} . | | | | | | | (iii) Hence or otherwise, find $f(x)$. | [8] | | | | | (d) | Write $f(x)$ In the form $f(x) = a(x-h)^2 + k$, where a , h and k are rational | | | | | | | numbers. | [3] | ## [MAI 1.14] MATRIX EQUATIONS - THE LINEAR SYSTEM AX=B | 28. | [Maximum mark: 14] | | | | | | |-----|--------------------|---|-----|--|--|--| | | The | function f is given by $f(x) = mx^3 + nx^2 + px + q$, where m, n, p, q are integers. | | | | | | | The | graph of f passes through the points (0, 0) and (3, 18). | | | | | | | (a) | Write down the value of q . | [1] | | | | | | (b) | Show that $27m + 9nx + 3p = 18$. | [2] | | | | | | The | graph of f also passes through the points (1, 0) and (-1, -10). | | | | | | | (c) | Write down the other two linear equations in m,n and p . | [2] | | | | | | (d) | (i) Write down these three equations as a matrix equation. | | | | | | | | (ii) Solve this matrix equation. | [6] | | | | | | (e) | The function f can also be written $f(x) = x(x-1(rx-s))$ where f and f are | | | | | | | | integers. Find r and s . | [3] |