INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation MAI

EXERCISES [MAI 1.14] MATRIX EQUATIONS – THE LINEAR SYSTEM AX=B

Compiled by Christos Nikolaidis

A. Paper 1 questions (SHORT)

MATRIX EQUATIONS

1.	[Maximum mark: 6]	
	(1 2)	1

(ii)

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.

Find a matrix X such that 2A+3X=B by using two methods:

- (i) **Method A**: Assume that $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and find a,b,c,d.
 - Method B: Solve the equation for X and then calculate X.

2.	[Maximum	mark.	QΊ
۷.	IIVIAXIIIIUIII	mark.	Οl

(c)

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.

- (a) Find A^{-1} . [1]
- (b) Find a matrix X such that AX = B by using two methods:
 - (i) **Method A**: Assume that $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and find a,b,c,d .
 - (ii) **Method B**: Solve the equation for X and then calculate X. [5]

[2]

(ii) Method B. Conve the equation for A and their calculate A.			
Find a matrix X such that $XA = B$ [use method B only].			

3.	[Maximum	55 5 5 1 5 T T T
-3	IIVIAXIIIIIIII	mark / i

All matrices in this question are 2×2 matrices. Provided that matrix A has an inverse, solve the following matrix equations

Equation	Solve for X
X - A = B	
A + 2X = B	
AX = C	
XA = C	
AXA = C	
AX - B = C	
2AX + 3B = C	

4. [Maximum mark: 6]

The matrices A, B, C and X are all invertible 3×3 matrices.

- (a) Given that $A^{-1}XB = C$, express X in terms of the other matrices.
- (b) Provided that A I has an inverse, solve the matrix equations

(i)
$$AX - X = C$$
 (ii) $XA - X = C$.

[2]

[4]

.....

.....

_	ximum mark: 4]
Let 2	$4 = \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}.$
	Find A^2 .
(b)	Let $\mathbf{B} = \begin{pmatrix} -3 & 4 \\ 2 & 1 \end{pmatrix}$. Solve the matrix equation $3\mathbf{X} + \mathbf{A} = \mathbf{B}$.
[Max	ximum mark: 51
	kimum mark: 5] en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.
	en that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ find \mathbf{X} if $\mathbf{B}\mathbf{X} = \mathbf{A} - \mathbf{A}\mathbf{B}$.

	d B are 2 × 2 matrices, where $A = \begin{bmatrix} 5 & 2 \\ 2 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 11 & 2 \\ 44 & 8 \end{bmatrix}$. Find B .
	kimum mark: 4] $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}.$
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find AB .
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find AB .
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find \mathbf{AB} . Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$.
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find $A\mathbf{B}$. Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$.
_et ∠ (a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find $A\mathbf{B}$. Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$.
_et ∠ a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$. Find $A\mathbf{B}$. Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$.
_et ∠ a)	$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}.$ Find $\mathbf{A}\mathbf{B}$. Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$.

9.	[Maximum	mark:	6]
----	----------	-------	----

Let
$$\mathbf{A} = \begin{pmatrix} 5 & 1 \\ 6 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ -6 & 5 \end{pmatrix}$.

(a) (i) Find AB. (ii) Write down the inverse of A. [3]

Let $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $C = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

(b) Solve the matrix equation AX = C. [3]

10. [Maximum mark: 6]

Consider the matrix $\mathbf{A} = \begin{pmatrix} 5 & -2 \\ 7 & 1 \end{pmatrix}$.

- (a) Write down the inverse, A^{-1} . [2]
- (b) B, C and X are also 2×2 matrices.
 - (i) Given that XA + B = C, express X in terms of A^{-1} , B and C.
 - (ii) Given that $\mathbf{B} = \begin{pmatrix} 6 & 7 \\ 5 & -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} -5 & 0 \\ -8 & 7 \end{pmatrix}$, find \mathbf{X} . [4]

_	ximum mark: 4] $4 = \begin{pmatrix} 2 & -4 \end{pmatrix}$
	$\mathbf{A} = \begin{pmatrix} 2 & -4 \\ -1 & 3 \end{pmatrix}.$
(i)	Find A^{-1} . (ii) Solve the matrix equation $AX = \begin{pmatrix} 4 & 6 \\ 2 & -2 \end{pmatrix}$.
. [Maː	kimum mark: 7]
•	aman mark. 7
•	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$.
Mati	
Mate Let .	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. If C be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. Equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2
Mate Let . This mate	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix.
Matr Let . This matr (a)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. If C be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. Equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} .
Matrice Let This matrice (a)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2×2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X .
Mate Let . This mate (a) (b)	rices A , B and C are defined by $A = \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 4 \\ -3 & 15 \end{pmatrix}$ $C = \begin{pmatrix} 9 & -7 \\ 8 & 2 \end{pmatrix}$. X be an unknown 2 × 2 matrix satisfying the equation $AX + B = C$. equation may be solved for X by rewriting it in the form $X = A^{-1}D$, where D is a 2×2 rix. Write down A^{-1} . Find D . Find X .

13.	[Maximum mark: 6]	
	The matrices A , B , X are given by	
	$A = \begin{pmatrix} 3 & 1 \\ -5 & 6 \end{pmatrix}, B = \begin{pmatrix} 4 & 8 \\ 0 & -3 \end{pmatrix}, X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ where } a, b, c, d \in \mathbb{Q}.$	
	Given that $AX + X = B$, find the exact values of a , b , c and d .	
14.	[Maximum mark: 5]	
17.		
	Let $A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & -3 & 0 \\ 4 & -2 & 1 \end{pmatrix}$.	
		[1]
	(b) Let B be a 3 × 3 matrix. Given that $AB + \begin{pmatrix} -3 & 2 & 1 \\ 5 & 3 & 4 \\ -9 & 2 & 10 \end{pmatrix} = \begin{pmatrix} 7 & 6 & -7 \\ 6 & 5 & -8 \\ 1 & 7 & -5 \end{pmatrix}$, find B .	[4]

		THE LINEAR SYSTEM $AX = B$	
15.	[Max	imum mark: 6]	
	Let 2	$4 = \begin{pmatrix} 7 & 8 \\ 2 & 3 \end{pmatrix}$	
	(a)	by using the appropriate formulas, find	
		(i) $\det A$	
		(ii) A^{-1} .	[3]
	(b)	Hence, solve the system of simultaneous equations.	
		7x + 8y = 1	
		2x + 3y = 1	[3]

16.	6. [Maximum mark: 8] Let $\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$.		
	(a)	Write down the determinant of M .	[1]
	(b)	Write down M^{-1}	[1]
	(b)	Hence solve $M \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$.	[3]
	(c)	Write down	
		(i) a system of equations represented by the matrix equation in (c).	
		(ii) the solution of the system	[3]

17.		[Maximum mark: 6]				
	A m	atrix M has inverse $M^{-1} = \begin{pmatrix} 5 & 0 \\ 1 & 2 \end{pmatrix}$. Let $B = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$.				
	(a)	Find M	[3]			
	(b)	Solve the matrix equation $MX = B$	[3]			
18.	[Max	ximum mark: 5]				
	Let	$\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ -1 & -1 & 4 \\ 2 & 4 & -3 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}.$				
	(a)	Write down A^{-1} .	[2]			
	(b)	Solve $AX = B$.	[3]			

19.	[Maximum	mark.	61
	IIVIANIIIIAIII	midin.	\sim 1

(a) Write down the inverse of the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & -3 & 1 \\ 2 & 2 & -1 \\ 1 & -5 & 3 \end{pmatrix}$$
. [2]

(b) Hence solve the simultaneous equations

$$x-3y+z=1$$

$$2x+2y-z=2$$

$$x-5y+3z=3$$
[4]

20. [Maximum mark: 6]

(a) Write down the inverse of the matrix
$$A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix}$$
 [2]

(b) Hence solve

Therefore solve
$$x-3y=1$$

$$2x+z=2$$

$$4x+y+3z=-1$$
[4]

21.	[Maximum	mark.	ឧា
4 1.	IIVIAXIIIIUIII	IIIain. '	υı

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 18 \\ 23 \\ 13 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- (a) Write down the inverse matrix A^{-1} .
- (b) Consider the equation AX = B.

(i)	Express X in terms of A^{-1} and B . (ii) Hence , solve for X				

22. [Maximum mark: 6]

The system of linear equations below can be written as the matrix equation MX = N.

$$x+6y-3z = -1$$

$$4x+2y-4z = 12$$

$$x+y+5z = 15$$

- (a) Write down the matrices M and N.
- (b) Solve the **matrix** equation MX = N. [3]

[2]

(c) Hence write down the solution of the system of linear equations. [1]

 	•••••	

22	Maximum	mark	<u>۵</u> 1
23 .	[Maximum	IIIaik.	ΟI

The matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ -3 & 1 & -1 \\ 2 & -2 & 1 \end{pmatrix}$$
 has inverse $\mathbf{A}^{-1} = \begin{pmatrix} -1 & -2 & -2 \\ 3 & 1 & 1 \\ a & 6 & b \end{pmatrix}$.

(a) Use the fact $AA^{-1} = I$ to find the value of (i) a; (ii) b. [2]

Consider the simultaneous equations

$$x+2y=7$$

$$-3x+y-z=10$$

$$2x-2y+z=-12$$

(a)	write these equations as a matrix equation.	[1]
(c)	Solve the matrix equation.	[3]

Paper 2 questions (LONG)

Let
$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
.

(a) Find (i)
$$A^{-1}$$
; (ii) A^{2} . [4]

Let
$$\mathbf{B} = \begin{pmatrix} p & 2 \\ 0 & q \end{pmatrix}$$
.

(b) Given that
$$2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 6 \\ 4 & 3 \end{pmatrix}$$
, find the value of p and of q . [3] (c) Hence find $\mathbf{A}^{-1}\mathbf{B}$.

[2]

(d)	Let X be a 2 × 2 matrix such that $AX = B$. Find X .	[2]

		[MATERIAL PROPERTY OF THE ENGLAND OF			
25.	[Max	Maximum mark: 12]			
	Let .	$m{M} = egin{pmatrix} a & 2 \\ 2 & -1 \end{pmatrix}$, where $a \in \mathbb{Z}$.			
	(a)	Find M^2 in terms of a	[4]		
	(b)	If M^2 is equal to $\begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$, find the value of a .	[2]		
	(c)	Using this value of a , find M^{-1} and hence solve the system of equations:			
		-x + 2y = -3			
		2x - y = 3	[6]		

26. [Maximum mark: 13]

Let
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$
.

(a) Write down A^{-1} . [2]

The matrix \mathbf{B} satisfies the equation $\left(\mathbf{I} - \frac{1}{2}\mathbf{B}\right)^{-1} = \mathbf{A}$, where \mathbf{I} is the 3×3 identity matrix.

- (b) (i) Show that $\mathbf{B} = -2(\mathbf{A}^{-1} \mathbf{I})$ and hence find \mathbf{B} .
 - (ii) Write down $\det \mathbf{B}$ and hence, explain why \mathbf{B}^{-1} exists. [6]

[5]

Let $\mathbf{BX} = \mathbf{C}$, where $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

(c) (i) Find X.

(ii)	Write down a system of equations whose solution is represented by $oldsymbol{X}$.

27.

[Max	kimum mark: 15]				
Let	$f(x) = ax^2 + bx + c$ where a , b and c are rational numbers.				
(a)	The point P(-4, 3) lies on the curve of f Show that $16a-4b+c=3$.				
(b)	(b) The points Q(6, 3) and R(-2 , -1) also lie on the curve of f . Write down two other				
	linear equations in a , b and c .	[2]			
(c)	These three equations may be written as a matrix equation in the form $AX = B$,				
	where $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.				
	(i) Write down the matrices \boldsymbol{A} and \boldsymbol{B} .				
	(ii) Write down A^{-1} .				
	(iii) Hence or otherwise, find $f(x)$.	[8]			
(d)	Write $f(x)$ In the form $f(x) = a(x-h)^2 + k$, where a , h and k are rational				
	numbers.	[3]			

[MAI 1.14] MATRIX EQUATIONS - THE LINEAR SYSTEM AX=B

28.	[Maximum mark: 14]					
	The	function f is given by $f(x) = mx^3 + nx^2 + px + q$, where m, n, p, q are integers.				
	The	graph of f passes through the points (0, 0) and (3, 18).				
	(a)	Write down the value of q .	[1]			
	(b)	Show that $27m + 9nx + 3p = 18$.	[2]			
	The	graph of f also passes through the points (1, 0) and (-1, -10).				
	(c)	Write down the other two linear equations in m,n and p .	[2]			
	(d)	(i) Write down these three equations as a matrix equation.				
		(ii) Solve this matrix equation.	[6]			
	(e)	The function f can also be written $f(x) = x(x-1(rx-s))$ where f and f are				
		integers. Find r and s .	[3]			